
1

Programming in ANSI C language in

TABLE OF CONTENT

• Blocks programmable in ANSI C language

• Function list

• Introduction on how to program in ANSI C language in EICASLAB

• Pre-organised structure for programming in ANSI C

allows to develop embedded control system architectures
at different hierarchical levels offering a pre-organized environment that
supports the control designer in all the design steps.

Mission
Area

Control
Area

Plant
Area

During the programming phase, three
main areas are available in the
SIMBUILDER:

• the Plant Area
• the Control Area
• the Mission Area

specifically devoted and customized to
program the different parts of your project.

Special attention is given to support
the designer during the programming
phase of the different areas, going
from the possibility to use a graphical
high level language to the possibility to
directly program in standard ANSI C
(or to combine both programming
modes).

Introduction

allows an easy programming in ANSI C by
means of a pre-organized structure that allows you to
focus just on specific and crucial aspects of the system to
be programmed, being relieved from all the other aspects
that are automatically managed by EICASLAB.

How to program in ANSI C in

The pre-organised structure is open and customizable:

• you have all the potentialities of the standard ANSI C
language,

• you can complete the pre-organised structure adding
personal files, folder or libraries,

• you can exploit the pre-organised structure totally or
partially.

5

Pre-organised structure for C programming
The file manager

Directories

Files

Every block programmed in
ANSI C has its own file manager
through which it is possible to
see all the pre-organised
structure
and to program the block.

Pre-organised structure for C programming
Customization for Programming Areas

Every specific block of the
Plant Area, Control Area and
Mission Area has a particular
and customized file
organization.

For the control blocks the files are
separated in order to clearly
identify:

• the files only useful for simulation
purposes,

• the files for control algorithm:
destinated to the target (the
Application Software to be
transferred to the final target).

Pre-organised structure for C programming
Templates

For every block of your project
programmed with standard ANSI C
code EICASLAB provides a set of
template files subdivided in:
• data files,
• header files,
• C files.

You can write and customize these
files in order to implement your
block.

Pre-organised structure for C programming
Functional organization

The templates are organized in a functional way.
The C files contain functions devoted to a specific task,
having at disposal:

• pre-configured data files,
• header files.

D
at
a
Ba

se

Initialization functions

Execution functions

Final functions

User or automatic
managing of the data files

9

Every block has its own header files included by all its
C files.

Pre-organised structure for C programming
Data Base: Header files

All the header files are generated
by EICASLAB, there are:

• header files not directly
available:

• header files available through
the file manager,

• defined by the user through
a window,

• fixed, that cannot be
modified

10

Header files of the pre-organised
structure that are written by the user.

Defines.h

Typedef.h

DB.h

Prototypes.h

Pre-organised structure for C programming
Data Base: User Header files

Common.h

DBP.h

Definition of
user constants

Definition of user
structures

Definition / declaration of
user variables

Declaration of
the function prototypes

Available for all the
blocks programmed in C

Available for all the
controls of a processor

11

Pre-organised structure for C programming
Data Base: WorkSpace

The WorkSpace contains a set of
global C variables,
defined by the user

In EICASLAB there are the following
WorkSpaces:

• the Plant Area WorkSpace
• the Mission Area WorkSpace
• One WorkSpace for every processor

(of the Control Area)

12

Pre-organised structure for C programming
Data Base: Header files scope

Common.h, Standard.h

Defines.h
Typedef.h

DB.h
Prototypes.h

DBP.h

WS.h
(Processor WorkSpace)

Control Area block
header files

Plant Area block
header files

WSPLArea.h
(Plant Area WorkSpace)

WSMSArea.h
(Mission Area WorkSpace)

Mission Area block
Header files

Block

Processor

Working Area,
processor for controls

Project

Scope of the
header files

DBInterface.h

Defines.h
Typedef.h

DB.h
Prototypes.h

DBInterface.h

Defines.h
Typedef.h

DB.h
Prototypes.h

DBInterface.h

GP headers GP headers

WS.h
(Processor WorkSpace)

Project, except controls

13

Function
description

Parameter file reading ReadPar ReadPar.c <block name>.par

C File
Function
suffix

Data File
Plant
Area

Control
Area

Mission
Area

Only
Continuous
Plant

Pre-organised structure for C programming
Initialization functions

Specific C
file of the
block

User initialisation function Ini ---

Resolution file reading ReadResol ReadResol.c Resolution.par

Control design Des CtrDes.c ---

Initial state file reading ReadState RWState.c <block name>.inistate

14

Pre-organised structure for C programming
Data Base for the reading functions

15

To guarantee the correct scheduling of the block it is necessary to take into account its duration:
this is done by writing two functions for the periodic activity of the block:

EICASLAB performs a like real time simulation of your project:
to perform such a simulation the user has to provide the following scheduling parameters for every block
of its project:

duration

periodphase

t

Pre-organised structure for C programming
Execution functions

• Period all the blocks are periodic,
• Duration duration of the periodic activity of the block.

output function

execution function executes all the operations that the block
must perform each time it is scheduled

called when the block is scheduled (considering its
phase and its period)

called after the fixed durationcomputes the outputs of the block
as a function of its current state

• Phase time at which the block begins to work,

16

Function
description

User final function Fin ---

C File
Function
suffix

Data File
Plant
Area

Control
Area

Mission
Area

Pre-organised structure for C programming
Final functions

Specific C
file of the
block

Final state file writing WriteState RWState.c <block name>.finstate

17

Pre-organised structure for C programming
Interface between the blocks programmed in C

and the rest of the project

The input/output variables
of the block are defined by
means of an appropriate
window.

The input/output
variables are C variables
that can be used in any C
function of the block.

18

Pre-organised structure for C programming
Benefits of the pre-organised structure

Automatic link of your blocks programmed in ANSI C with the rest of your project.

Automatic standard managing of data files (opening, reading, writing, closing).

Automatic generation of the Makefile needed for compiling your ANSI C code.

No need to manually create all the base structure necessary for a good ANSI C programming.

You can modify the proposed structure adding:
new user files,

o data files,
o header files,
o C files,

new directories.

You can link your code with external libraries.

You can take full advantage of the facilities offered by EICASLAB.
You have all the potentialities of the standard ANSI C language.

19

Blocks programmable in ANSI C language

Tools

Continuous Plant

Discrete PlantPlant area

Experimental Data
D/A Converter

A/D Converter

Control area

Control

Processor Input/Output

MissionMission area

20

Function names

Function prefix

Continuous Plant

Discrete Plant

Experimental Data

A/D & D/A Converters

CP

DP<block index >

Example

ED<block index >

A/D & D/A Converters

AD<block >

DA<block index>

M<block index>

C<control index>P<processor index>

ProcIn<control index>P<processor index>

CP_Exe

ProcOut<control index>P<processor index>

Function names: <prefix (type of block)>_<suffix (type of function)>

ProcOut1P1_Exe

M_Exe

C1P1_Exe

ProcIn1P1_Exe

DA1_Exe

AD1_Exe

ED1_Exe

DP1_Exe

Continuous Plant

Discrete Plant

Experimental Data

A/D Converter

D/A Converter

Control

Processor Input

Mission

ProcessorOutput

21

Function list

Function
suffix

Function
description

Ini User initialisation function for Continuous Plant / Discrete Plant StateEq.c
for Experimental Data Ini.c

Des Control Design for Controls CtrDes.c
ReadPar Parameter file reading ReadPar.c
ReadState Initial State file reading RWState.c
ReadResol Resolution file reading (just for Continuous Plant) ReadResol.c

Exe Computation of the State derivative for Continuous Plant StateEq.c
Computation of the next state for the DiscrPlant
Reading of one cycle data for the Experimental Data Exe.c
Post processing of the read data for the Experimental Data PostProc.c
Computation of the outputs of the converters ExeConvAD.c/ExeConvDA.c
Mission execution Mission.c
Control execution Ctr.c
Processor Input/Output execution ProcIn.c / ProcOut.c

Out Computation of the outputs (same as ‘Exe’ functions)

Fin User final function for Continuous Plant / Discrete Plant StateEq.c
for Experimental Data Fin.c

WriteState Final State file writing RWState.c

Function names <prefix (type of block)>_<suffix (type of function)>

File

22

The Professional Software Suite
for Automatic Control Design

and Forecasting

for Windowsfor Linux
&

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22

