
1

A/D and D/A Converters in

TABLE OF CONTENT

• General description of the A/D and D/A converters

• The Library Converters

• The ANSI C Converters

• The scheduling of the A/D and D/A converters

3

Concept

The A/D and D/A converters are the interface between analogical and digital
signals.

There are then 2 types of converters:

• the analogical digital (A/D) converters (sensors),
• the digital analogical (D/A) converters (actuators).

All the digital signals are characterized by a quantization level.
The converters need to know it for working: it is their fundamental parameter.

4

The A/D and D/A connections in EICASLAB

In EICASLAB the Continuous Plant block works on analogical data while all the
other blocks use digital data.
To connect a Continuous Plant to any other block it is necessary to insert between
them the A/D and D/A converter blocks that translate the analogical signals
belonging to the Continuous Plant (analogical data) into discrete signals (discrete
data) and vice versa.

Connection Not allowed

5

The A/D and D/A converter blocks in EICASLAB

The converters are blocks belonging to the I/O Devices library.
They can be inserted in:

• the System Layout
(they are available in the I/O Devices library of the System Library window)

• the Hybrid Plant Layout
(they are available in the I/O Devices library of the Hybrid Library window)

6

The Programming modes of the A/D and D/A
converters

You can program the A/D and D/A converters in two ways:

using predefined models that you can customize setting suitable parameters
(Library Converters),

using the ANSI C language
(ANSI C Converters).

8

The Library Converters

Associated popup menu

When you insert a converter in your project it is, by default, a Library Converter.

9

The Library Converters

The pre-defined model for A/D converters (1)

Ideal Model:
characterised only by the quantization level.

Fine Model:
models the measurement errors:
• non linearity,
• hysteresis,
• white noise,
• saturation.

10

The Library Converters

The pre-defined model for A/D converters (2)

Quantization:
divides the measure for the quantization value.

Non Linearity:
it adds to the measure ‘y’ the term ‘a sin(y b)’
where ‘a’ and ‘b’ are respectively the first and the second
non linear coefficients;

Hysteresis:
it models the behaviour of incremental encoders.
It works by verifying the difference between the new
measure and the old one, decreasing/increasing the new
measure if the difference is greater/minor than a factor
delta;

White noise:
it adds to the measure a signal described by an uniform
distribution with a specific range;

Saturation:
applies an upper and a lower limit to the measure;

11

The Library Converters

The pre-defined model for A/D converters (3)

An A/D and D/A converter block
can have more inputs and outputs.

For complying the pre-defined
model the number of outputs must
be equal to the number of inputs.

Every input/output can be
customized having its own model
parameters.

12

The Library Converters

The pre-defined model for D/A converters

Ideal Model:
characterised only by a quantization level.

Fine Model:
considers also other phenomena:

• saturation.

• non linearity,

• white noise,

• hysteresis.

13

The Library Converters

The Input/Output variables (1)

The input/output variables of the
block are defined by means of an
appropriate window.

For complying the pre-defined
model the number of outputs
must be equal to the number of
outputs: if you add an input a
corresponding output is
automatically added.

The input/output
variables are ANSI C
variables .

14

The Library Converters

The Input/Output variables (2)

The converters work directly on
the output variables of the
blocks to which they are
connected.

Any quantity has to be
measured when it is available
(every measure corresponds to
a precise measuring time).

The input variable is then a
pointer to the output variable
to which it is connected (e.g.:
variable *u_a).

15

The Library Converters

SIM plotting and POST recording

You can select the input, output, and
state variables for plotting and
recording them during the simulations.

17

Directories

Files

The Converter programmed with ANSI C language

The Converter file manager

The Converter programmed with ANSI
C language has its own file manager
through which it is possible to
program the block.

EICASLAB provides a
pre-organised structure:
a set of template files
subdivided in:
• data files,
• header files,
• ANSI C files,
that you can write and
customize in order to
implement your block.

18

Header files of the pre-organised
structure that are written by the user.

Defines.h

Typedef.h

DB.h

Prototypes.h

Common.h

Definition of
user constants

Definition of user
structures

Definition / declaration of
user variables

Declaration of
the function prototypes

Available for all the blocks
programmed in ANSI C

The Converter programmed with ANSI C language

The header files

Name

AD#_ReadPar Parameter file reading ReadPar.c ConvAD.par

ANSI C FileDescription Data File

AD#_Ini User initialisation function ExecConvAD.c ---

AD#_ReadState Initial state file reading RWState.c ConvAD.inistate

The Converter programmed with ANSI C language

Initialization functions

20

The Converter programmed with ANSI C language

Execution functions

Name

ExecConvAD.c

C FileDescription

AD#_Exe
Executes all the operations that the activity must perform each time it is scheduled

and updates its outputs

21

The Converter programmed with ANSI C language

Final functions

Name

AD#_Fin User final function ExecConvAD.c ---

C FileDescription Data File

AD#_WriteState Final state file writing RWState.c ConvAD.finstate

22

The Converter programmed with ANSI C language

Data file management

23

The Library Read/Write Functions

The Converter programmed with ANSI C language

24

The input/output variables of the block are defined
by means of an appropriate window.

The converters work directly on the output
variables of the blocks to which they are
connected.
The input variables are then pointers to the
output variables to which they are connected .

The Converter programmed with ANSI C language

The Input/Output variables

The input/output variables
are ANSI C variables that
can be used in any ANSI C
function of the block.

The scheduling of the Converter functions

The Converters may be programmed through a set of activities (functions):

Library Converter:
all the functions are entirely created and managed by EICASLAB.

Converter programmed in ANSI C:
all the functions have a template provided by EICASLAB and
are managed by the user.

The Converter functions

The scheduling of the Converter functions

C
o
n
ve
rt
er

A
ct
iv
it
ie
s Initialization functions

Execution functions

Final functions

called just once at the beginning of the simulation

called just once at the end of the simulation

periodically scheduled

The activities are subdivided in three main categories:

Simulation step

Functions categories

The scheduling of the Converter functions

The user has to fix a simulation step,
which represents the time resolution applied in the simulation of the overall project.

Their execution functions implement periodic activities characterized by the following
scheduling parameters (expressed as a multiple of the simulation step):

• Phase time at which they are called for the first time,

• Period their sample time interval.

Scheduling parameters

The converters are by default istantaneous activities (their duration is negligible
with respect to the duration of the other activities).

phase

t

execution function
executes all the operations that the activity must

perform each time it is scheduled and

updates its outputs

called when the block is scheduled (considering its

phase and its period)

periodperiod

The scheduling of the Converter functions

Initialization and final functions

The initialization functions are called just once at the beginning of the simulation,
in the following order:

1) Parameter file reading,

2) Initial state file reading,

3) User initialisation function (Only when programmed in ANSI C language).

Library converter:

functions entirely created and managed by EICASLAB,
Converters programmed in ANSI C:

functions created by EICASLAB (template) and managed by the user.

The final functions are called just once at the end of the simulation
in the following order:

1) User final function (Only when programmed in ANSI C language),

2) Final state file writing.

30

The scheduling of the Converters

How to set the scheduling

31

The Professional Software Suite

for Automatic Control Design

and Forecasting

for Windowsfor Linux
&

