
1

The main Working Areas for designing in

The Plant Area

TABLE OF CONTENT

• General description of the Plant Area

• The Continuous Plant

• The Discrete Plant

• The Experimental Data

The three main Working Areas

Three main Working Areas
are available in EICASLAB:

• the Plant Area,
• the Control Area,
• the Mission Area,

specifically devoted and
customized to program the
different parts of your
project.

has been conceived and developed as a

professional software suite supporting the automatic control design
and allows to develop and test embedded control system
architectures at different hierarchical levels.

4

The Plant Area concept

The Plant modeling is a fundamental task for the control system development.

In the first phase of control design, the control system is tested in a whole
simulated environment in which the plant to be controlled is fully simulated.

The Plant Area in EICASLAB is specifically devoted to offer all the necessary
features for modeling your Plant.

Typically the Plant model must consider all the aspects neglected in the control
algorithm design– such as friction, hysteresis and other non linearities – but
that may act on the frequency band of the control.

If the Plant model is not accurate enough you can obtain good simulations but
then the control could work not correctly on field.

On the other side, a Plant model too accurate may lead to useless and long
computation and simulation time without providing significant results.

5

The Plant Area environment
EICASLAB offers a pre-organized environment devoted to the design and the
implementation of the Plant Area, which allows an accurate and efficient
development of your Plant models.
You have at disposal a set of libraries devoted to simulate the crucial aspects of
the Plant, including general and accurate models for the typical non-linearities
such as the hysteresis and the friction or other non-linearities that typically are
neglected in the control algorithm design.

EICASLAB adopts a fully original and proprietary procedure for the integration
of the differential equations of the Continuous Plant model.
The procedure has been specifically developed for overcoming the frequent
difficulties met as a consequence of the numerical errors, which can not be
avoided even with the best techniques of numerical integration. It can be handled
in a way such to make their effects negligible.
The procedure requires a “resolution value” for each state variable.
The “resolution value” is strictly linked to the physical meaning of the state
variable and corresponds to the precision with which you want to compute the
variable value at each sampling step.

The Plant Area simulation

6

Plant Categories in the Plant Area
The following categories of plant may be programmed in the Plant Area:

the Continuous Plant:
it is the mathematical fine model of the plant to be controlled.
It is a dynamic system - with state and outputs variables - that can be
represented through a system of differential equations,

the Discrete Plant:
it allows to simulate a Plant by means of a set of finite differences equations
(the model uses a discrete time approach),

the Experimental Data:
it allows to substitute the Plant model with a set of data collected on field
during experimental trials.
It is then possible to perform simulations using directly the on field data
instead of data computed by means of a Continuous or a Discrete Plant.

the Hybrid Plant:
it is an advanced container that can collect blocks representing:
o a Continuous Plant, a set of Discrete Plants and Experimental Data,
o missions that allow to model disturbances acting on the Plant,
o A/D and D/A converters.

7

The Programming modes of the Plant Area

You can develop your Plant:

graphically programming:
you work on graphical layouts equipped with specific and oriented libraries
that contain a set of suitable pre-defined blocks,

programming with ANSI C language:
EICASLAB allows an easy programming in ANSI C language
by means of an open and customizable pre-organized structure
that allows you to focus just on specific and crucial aspects of the system to be
programmed.
You have at disposal a set of template files and libraries,

using pre-defined libraries,

using a combination of pre-defined libraries and ANSI C language programming.

PLANT
AREA

Continuous Plant Discrete Plant Experimental Data Hybrid Plant
Continuous PlantDiscrete Plant

Experimental Data

The Programming modes of the blocks of the Plant Area

Hybrid Plant

9

The Continuous Plant

Differential state equations and EICASLAB integration procedure

The Continuous Plant is a dynamic system described by a set of state variables
that can be represented through a system of differential state equations.

The differential state equations provide the state derivative as a function of the
state and the inputs of the Continuous Plant and are called state equations:

dx/dt = f(x,u,t;par)

(having indicated: x: states, u inputs, t: current time, par: parameters).

The integration of the differential state equations is carried out through a smart
proprietary integration procedure embedded in the EICASLAB SIM tool.
The procedure has been specifically developed for overcoming the frequent
difficulties met as a consequence of the numerical errors, which can not be
avoided even with the best techniques of numerical integration. It can be handled
in a way such to make their effects negligible.
The procedure requires a “resolution value” for each state variable.

10

The Continuous Plant

The state variable number

The procedure for integrating the differential
equations representing the model of a
Continuous Plant requires the knowledge of
the state variable number:

Graphical Continuous Plant:
the state variable number is
automatically available in EICASLAB
based on the graphical representation

Continuous Plant programmed in ANSI C:
the user has to explicitly provide
the state variable number.

11

The Continuous Plant

Associated popup menu

The Continuous Plant is by default graphically programmed.

The Continuous Plant Layout
allows to graphically program
the Continuous Plant.

You can build your plant
model by using the blocks
available in the Continuous
Plant Library window,

and by setting their:
 outputs,
 parameters,
 resolution (dynamic blocks),
 initial states (dynamic blocks).

The Continuous Plant graphically programmed

The Continuous Plant Layout

The Continuous Plant graphically programmed

The non-linear library

Name Icon in library Block in the layout decription

Coulomb

Friction

Generate output according to a

coulomb friction model

Hysteresis Generate output according to an

hysteresis model

Dead Zone Generate output according to a

backlash model

Min Sat Limit the lower value of a signal

Max Sat Limit the upper value of a

signal

Double Sat Limit the range of a signal

14

You can simplify the
representation of your
system by collecting parts
of your block diagram in a
block called Subsystem.

Double clicking on the
subsystem opens the
Subsystem layout, where
you can use all the blocks
available in the related
library.
You can also create other
subsystems in order to
build a hierarchical block
diagram.

The Continuous Plant graphically programmed

The subsystems

15

It is possible to use special blocks
programmable in ANSI C
language.

There are two types of blocks,
allowing you to program in ANSI C
language:

• static functions
in this case the C block
implements the function:
y= f(u;par);

• dynamic functions
in this case the C block
implements the function:
y= f(x,u;par);

(having indicated:
y: outputs, u inputs, x: states, par:
parameters)

The Continuous Plant graphically programmed

The ANSI C blocks

16

The Continuous Plant library window is customizable with user blocks called
‘macros’.

The macros are created by the user in order to complete the library according to
the user needs.

The macros can be programmed:

• graphically (working on the Graphical Macro layout) or
• in ANSI C language.

They are then available in the library window of the layout, as all the other
blocks and can be used in the current project.

They can also be exported and then used in other projects.

The Continuous Plant graphically programmed

The macros

17

In order to define the
inputs and the outputs of a
graphically programmed
block:

insert
inside the graphical layout
the input – outputs blocks.

The Continuous Plant graphically programmed

The Input/Output variables

Plant OutputPlant Command InputPlant Noise Input

18

Directories

Files

The Continuous Plant programmed with ANSI C language

The Continuous Plant file manager

The Continuous Plant programmed
with ANSI C language has its own file
manager through which it is possible
to program the block.

EICASLAB provides a
pre-organised structure:
a set of template files
subdivided in:
• data files,
• header files,
• C files,
that you can write and
customize in order to
implement your block.

19

Header files of the pre-organised
structure that are written by the user.

Defines.h

Typedef.h

DB.h

Prototypes.h

Common.h

Definition of
user constants

Definition of user
structures

Definition / declaration of
user variables

Declaration of
the function prototypes

Available for all the
blocks programmed in C

The Continuous Plant programmed with ANSI C language

The header files

Name

CP_ReadPar Parameter file reading ReadPar.c ContPlant.par

C FileDescription Data File

CP_Ini User initialisation function StateEq.c ---

CP_ReadRes Resolution file reading ReadResol.c Resolution.par

CP_ReadState Initial state file reading RWState.c ContPlant.inistate

The Continuous Plant programmed with ANSI C language

Initialization functions

21

The Continuous Plant programmed with ANSI C language

Execution functions

Name

CP_StateEq Computation of the state derivative as a function of the current state and the inputs StateEq.c

C FileDescription

CP_Out Computation of the outputs of the Continuous Plant as a function of its current state StateEq.c

22

The Continuous Plant programmed with ANSI C language

Final functions

Name

CP_Fin User final function StateEq.c ContPlant.par

C FileDescription Data File

CP_WriteState Final state file writing RWState.c ContPlant.finstate

23

The Continuous Plant programmed with ANSI C language

Data file management

24

The Continuous Plant programmed with ANSI C language

The Library Read/Write Functions

25

The input/output variables
of the block are defined by
means of an appropriate
window.

The input/output
variables are ANSI C
variables that can be
used in any ANSI C
function of the block.

The Continuous Plant programmed with ANSI C language

The Input/Output variables

The scheduling of the Continuous Plant functions

The Continuous Plant may be programmed through a set of activities (functions):

Graphical Continuous Plant:
all the functions are entirely created and managed by EICASLAB and
depend on the graphical scheme of the Continuous Plant Layout and
on the data (e.g. parameters, resolution, states) directly inserted by the user.

Continuous Plant programmed in ANSI C:
all the functions have a template provided by EICASLAB and
are managed by the user.

The Continuous Plant functions

The scheduling of the Continuous Plant functions

C
o

n
ti

n
u

o
u

s
P

la
n

t
A

ct
iv

it
ie

s

Initialization functions

Execution functions

Final functions

called just once at the beginning of the simulation

called just once at the end of the simulation

periodically scheduled

The functions belong to three main categories:

The user has to fix a simulation step,
which represents the time resolution applied in the simulation of the overall project.

The outputs and the state variables of the Continuous Plant are updated
at each simulation step.

The scheduling of the Continuous Plant functions

Initialization functions

The initial functions are called just once at the beginning of the simulation,
in the following order:

1) Parameter file reading,

2) Resolution file reading,

3) Initial state file reading,

4) User initialisation function (Only when programmed in ANSI C language).

Graphical Continuous Plant:

functions entirely created and managed by EICASLAB,
Continuous Plant programmed in ANSI C:

functions created by EICASLAB (template) and managed by the user.

29

The outputs of the Continuous Plant are updated at each simulation step.

State equation

function

Computation of the state derivative It is called by the EICASLAB routine that solves the

system of differential equations

Output function It is called at each simulation stepComputation of the outputs of the Continuous Plant

(as a function of its current state)

The scheduling of the Continuous Plant functions

Execution functions

Outputs update

t

Simulation step

Graphical Continuous Plant:

functions entirely created and managed by EICASLAB,
Continuous Plant programmed in ANSI C:

functions created by EICASLAB (template) and managed by the user.

30

The scheduling of the Continuous Plant functions

Final functions

The final functions are called just once at the end of the simulation
in the following order:

1) User final function (Only when programmed in ANSI C language),

2) Final state file writing.

Graphical Continuous Plant:

functions entirely created and managed by EICASLAB,
Continuous Plant programmed in ANSI C:

functions created by EICASLAB (template) and managed by the user.

31

The Discrete Plant

State equations

The Discrete Plant is a dynamic system described by a set of state variables that
can be represented through a set of finite differences equations (the model uses a
discrete time approach).

At each sample step the state of the dynamic system is computed as a function of
the previous state and of the inputs through the finite differences equations that are
called state equations:

x(i+1) = f(x(i),u(i))

The output of the Discrete Plant is computed as a function of its state:

y(i) = f(x(i))

(having indicated:y: outputs, u inputs, x: states, par: parameters)

32

The Discrete Plant

The Discrete Plant is by default graphically programmed.

Associated popup menu

The Discrete Plant layout
allows to graphically program
the Discrete Plant.

You can build your plant
model by using the blocks
available in the Discrete Plant
Library window,

and by setting their:
 outputs,
 parameters,
 initial states (dynamic blocks).

The Discrete Plant graphically programmed

The Discrete Plant Layout

The Discrete Plant graphically programmed

The non-linear library

Name Icon in library Block in the layout decription

Coulomb

Friction

Generate output according to a

coulomb friction model

Dead Zone Generate output according to a

backlash model

Min Sat Limit the lower value of a signal

Max Sat Limit the upper value of a

signal

Double Sat Limit the range of a signal

35

You can simplify the
representation of your
system by collecting parts
of your block diagram in a
block called Subsystem.

Double clicking on the
subsystem opens the
Subsystem layout, where
you can use all the blocks
available in the related
library.
You can also create other
subsystems in order to
build a hierarchical block
diagram.

The Discrete Plant graphically programmed

The subsystems

36

It is possible to use special blocks
programmable in ANSI C
language.

There are two types of blocks,
allowing you to program in ANSI C
language:

• static functions
in this case the C block
implements the function:
y= f(u;par);

• dynamic functions
in this case the C block
implements the function:
y= f(x,u;par);

(having indicated:
y: outputs, u inputs, x: states, par:
parameters)

The Discrete Plant graphically programmed

The ANSI C blocks

37

The Discrete Plant library window is customizable with user blocks called
‘macros’.

The macros are created by the user in order to complete the library according to
the user needs.

The macros can be programmed:

• graphically (working on the Graphical Macro layout) or
• in ANSI C language.

They are then available in the library window of the layout, as all the other
blocks and can be used in the current project.

They can also be exported and then used in other projects.

The Discrete Plant graphically programmed

The macros

38

In order to define the
inputs and the outputs of a
graphically programmed
block:

insert
inside the graphical layout
the input – outputs blocks.

The Discrete Plant graphically programmed

The Input/Output variables

Plant OutputPlant Command InputPlant Noise Input

39

The Discrete Plant programmed with ANSI C language

The file manager

Directories

Files

EICASLAB provides a
pre-organised structure:
a set of template files
subdivided in:
• data files,
• header files,
• C files,
that you can write and
customize in order to
implement your block.

The Discrete Plant programmed with
ANSI C language has its own file
manager through which it is possible
to program the block.

40

Header files of the pre-organised
structure that are written by the user.

Defines.h

Typedef.h

DB.h

Prototypes.h

Common.h

Definition of user constants

Definition of user structures

Definition / declaration of
user variables

Declaration of
the function prototypes

Available for all the blocks
programmed in C

The Discrete Plant programmed with ANSI C language

The header files

Name

DP#_ReadPar Parameter file reading ReadPar.c DiscrPlant.par

C FileDescription Data File

DP#_Ini User initialisation function StateEq.c ---

DP#_ReadState Initial state file reading RWState.c DiscrPlant.inistate

The Discrete Plant programmed with ANSI C language

Initialization functions

42

The Discrete Plant programmed with ANSI C language

Execution functions

Name

DP#_StateEq

C FileDescription

DP#_Out Computation of the outputs of the Discrete Plant as a function of its current state StateEq.c

StateEq.cComputation of the next state of the Discrete Plant as a function of its current

state and of its inputs

43

The Discrete Plant programmed with ANSI C language

Final functions

Name

DP#_Fin User final function StateEq.c -

C FileDescription Data File

DP#_WriteState Final state file writing RWState.c DiscrPlant.finstate

44

The Discrete Plant programmed with ANSI C language

Data file management

45

The Discrete Plant programmed with ANSI C language

The Library Read/Write Functions

46

The input/output variables
of the block are defined by
means of an appropriate
window.

The input/output
variables are ANSI C
variables that can be
used in any ANSI C
function of the block.

The Discrete Plant programmed with ANSI C language

The Input/Output variables

The scheduling of the Discrete Plant functions

The Discrete Plant may be programmed through a set of activities (functions):

Graphical Discrete Plant:
all the functions are entirely created and managed by EICASLAB and
depend on the graphical scheme of the Discrete Plant Layout and
on the data (e.g. parameters, states) directly inserted by the user.

Discrete Plant programmed in ANSI C:
all the functions have a template provided by EICASLAB and
are managed by the user.

The Discrete Plant functions

The scheduling of the Discrete Plant functions

D
is

cr
et

e
P

la
n

t
A

ct
iv

it
ie

s

Initialization functions

Execution functions

Final functions

called just once at the beginning of the simulation

called just once at the end of the simulation

periodically scheduled

The functions belong to three main categories:

Simulation step

Functions categories

The scheduling of the Discrete Plant functions

The user has to fix a simulation step,
which represents the time resolution applied in the simulation of the overall project.

The execution functions implement periodic activities characterized by the following
scheduling parameters (expressed as a multiple of the simulation step):

duration

periodphase Simulation step

t

• Phase time at which they are called for the first time,

• Period their sample time interval,

• Duration their execution time.

Scheduling parameters

The scheduling of the Discrete Plant functions

Initialization functions

The initial functions are called just once at the beginning of the simulation,
in the following order:

1) Parameter file reading,

2) Initial state file reading,

3) User initialisation function (Only when programmed in ANSI C language).

Graphical Discrete Plant:

functions entirely created and managed by EICASLAB,
Discrete Plant programmed in ANSI C:

functions created by EICASLAB (template) and managed by the user.

The scheduling of the Discrete Plant

The execution functions

Output function

State equation function Updating of the state of the Discrete Plant

Computation of the outputs of the Discrete Plant (as a function of its current state)

To guarantee the correct scheduling of the Discrete Plant it is necessary to take into account its duration:

Graphical Discrete Plant:

functions entirely created and managed by EICASLAB,
Discrete Plant programmed in ANSI C:

functions created by EICASLAB (template) and managed by the user.

duration

periodphase Simulation step

t

Output function

State equation function called when the Discrete Plant is scheduled (considering its phase and period),

called with the same period of the state equation function but with a delay equal to the

duration of the Discrete Plant in order to provide the outputs when they are expected

52

The scheduling of the Discrete Plant functions

Final functions

The final functions are called just once at the end of the simulation
in the following order:

1) User final function (Only when programmed in ANSI C language),

2) Final state file writing.

Graphical Discrete Plant:

functions entirely created and managed by EICASLAB,
Discrete Plant programmed in ANSI C:

functions created by EICASLAB (template) and managed by the user.

53

The scheduling of the Discrete Plant

How to set the scheduling

54

The Experimental Data

Concept

The Experimental Data allows to substitute the Plant model with a set of
data collected on field during experimental trials.

It is then possible to perform simulations using directly the on field data
instead of data computed by means of a Continuous or a Discrete Plant.

55

The Experimental Data is by default a library programmed block.

The Experimental Data

Associated popup menu

56

The Experimental Data: the library programming mode

The format of the Experimental Data File

The Experimental Data file is a text file (formatted file)
where each line contains data collected at the same time:
It contains one sample for every variable to read.

In this way there are as many columns as the number of variables to read
and as many lines as the total number of sample steps
corresponding to the duration of the experimental trial.

57

The Experimental Data: the library programming mode

The File Data Selection and Input/Output variables

58

The Experimental Data programmed with ANSI C language

The file manager

Directories

Files

EICASLAB provides a
pre-organised structure:
a set of template files
subdivided in:
• data files,
• header files,
• C files,
that you can write and
customize in order to
implement your block.

The Experimental Data programmed
with ANSI C language has its own file
manager through which it is possible
to program the block.

59

Header files of the pre-organised
structure that are written by the user.

Defines.h

Typedef.h

DB.h

Prototypes.h

Common.h

Definition of user constants

Definition of user structures

Definition / declaration of
user variables

Declaration of
the function prototypes

Available for all the
blocks programmed in C

The Experimental Data: the ANSI C programming mode

The header files

Name

ED#_ReadPar Parameter file reading ReadPar.c ExpData.par

C FileDescription Data File

ED#_Ini User initialisation function Ini.c ---

The Experimental Data programmed with ANSI C language

Initialisation functions

Name C FileDescription Data File

The Experimental Data programmed with ANSI C language

Execution function

ED#_Exe Read one record of the Experimental Data file Exe.c ---

Name C FileDescription Data File

The Experimental Data programmed with ANSI C language

Final functions

ED#_Fin User final function Fin.c ---

63

The Experimental Data programmed with ANSI C language

Data file management

64

The Experimental Data programmed with ANSI C language

The Input/Output variables

65

The Experimental Data: The Library + ANSI C programming mode

The library reading and the user post-processing

The Experimental Data file
is automatically read by
the library function and its
outputs (the raw data)
are post-processed by a
user function which
computes the outputs of
the Experimental Data
block.

66

The Experimental Data: The Library + ANSI C programming mode

The file manager

Name

ED#_ReadPar Parameter file reading ReadPar.c ExpData.par

C FileDescription Data File

ED#_Ini User initialisation function Ini.c ---

The Experimental Data: The Library + ANSI C programming mode

ANSI C functions

ED#_PostProc Post-processing of the data read from the Experimental Data file PostProc.c ---

ED#_Fin User final function Fin.c ---

The scheduling of the Experimental Data functions

The Experimental Data may be programmed through a set of activities (functions):

Library Experimental Data:
all the functions are entirely created and managed by EICASLAB.

Experimental programmed in ANSI C language:
all the functions have a template provided by EICASLAB and
are managed by the user.

Experimental programmed with a combination of library functions and
ANSI C language:
the functions are managed by the user
except the library functions for reading the data file.

The Experimental Data functions

The scheduling of the Experimental Data

Functions categories

Ex
p

er
im

en
ta

lD
at

a
A

ct
iv

it
ie

s

Initialization functions

Execution functions

Final functions

called just once at the beginning of the simulation

called just once at the end of the simulation

periodically scheduled

The functions belong to three main categories:

The scheduling of the Experimental Data functions

The user has to fix a simulation step,
which represents the time resolution applied in the simulation of the overall project.

The execution function implements a periodic activity characterized by the following
scheduling parameters (expressed as a multiple of the simulation step):

periodphase

• Phase time at which it is called for the first time,

• Period its sample time interval.

Scheduling parameters

Simulation step

t

Function
description

The initial functions are called just once at the beginning of the simulation.

Note
Order of

scheduling

The scheduling of the Experimental Data functions

Initialization and final functions

The final function is called just once at the end of the simulation.

Parameter file reading Only when programmed in ANSI C language

User initialisation function Only when programmed in ANSI C language

User final function Only when programmed in ANSI C language

72

The Experimental Data has one execution function
which reads the data file and, if it is requested, a post-processing function:

they are instantaneous functions
called when the block is scheduled (considering its phase and its period).

phase

t

The scheduling of the Experimental Data functions

The execution function

periodperiod

73

The scheduling of the Experimental Data functions

How to set the scheduling

The Hybrid Plant

The Hybrid Plant is a block
graphically programmed
that allows to group the
Plant Area blocks
(Continuous and Discrete
Plants and Experimental
Data), Plant Mission blocks
(for modelling disturbances
acting on the plant) and
converters.

75

The Professional Software Suite

for Automatic Control Design

and Forecasting

for Windowsfor Linux
&

