
1

The main Working Areas for designing in

The Mission Area

TABLE OF CONTENT

• General description of the Mission Area

• The Graphical Mission

• The ANSI C Mission

• The Elementary Missions

The three main Working Areas

Three main Working Areas
are available in EICASLAB:

• the Plant Area,
• the Control Area,
• the Mission Area,

specifically devoted and
customized to program the
different parts of your
project.

has been conceived and developed as a

professional software suite supporting the automatic control design
and allows to develop and test embedded control system
architectures at different hierarchical levels.

4

The Mission Area concept

The Mission Area is used to plan the
simulated trials.

It is split in two sections, respectively, the
Plant Mission and the Control Mission.

The Plant Mission has to generate the
disturbance acting on the plant during the
simulated trials and to schedule any other
event concerning the plant performance,
like plant parameters variations.

The Control Mission is devoted to generate the host command (which is an external
references of high hierarchical level) to be sent to the plant control during the
simulated trials.

The Mission Area design and implementation is a key task for the control system
design and testing.
EICASLAB gives all the necessary features for designing and implementing the Plant
Missions and the Control Missions.

5

Mission Categories in the Mission Area

The following categories of mission may be programmed in the Mission
Area:

the User Mission:
it is a Mission entirely programmed by the user.

the Elementary Missions:
they are a set of pre-defined signals.

6

The Programming modes of the Mission Area

You can develop your Mission:

graphically programming:
you work on graphical layouts equipped with specific and oriented libraries
that contain a set of suitable pre-defined blocks,

programming with ANSI C language:
EICASLAB allows an easy programming in ANSI C language
by means of an open and customizable pre-organized structure
that allows you to focus just on specific and crucial aspects of the system to be
programmed.
You have at disposal a set of template files and libraries,

Using the Elementary Missions.

7

The Mission Area library
The Mission block can be inserted in:

• the System Layout,

• the Hybrid Plant Layout (Plant Mission)

• the Processor Network layout (Control Mission)

8

The User Mission

Associated popup menu

The User Mission is by default graphically programmed.

The Mission Layout allows
to graphically program the
Mission.

You can implement your
Mission by using the blocks
available in the Mission
Library window,

and by setting their:
 outputs,
 parameters,
 initial states (dynamic blocks).

The Mission graphically programmed

The Mission Layout

The Mission graphically programmed

The non-linear library

Name Icon in library Block in the layout Description

Coulomb

Friction

Generate output according to a

coulomb friction model

Dead Zone Generate output according to a

backlash model

Min Sat Limit the lower value of a signal

Max Sat Limit the upper value of a signal

Double Sat Limit the range of a signal

11

You can simplify the
representation of your
system by collecting
parts of your block
diagram in a block called
Subsystem.

Double clicking on the
subsystem opens the
Subsystem layout, where
you can use all the blocks
available in the related
library.
You can also create other
subsystems in order to
build a hierarchical block
diagram.

The Mission graphically programmed

The subsystems

12

It is possible to use special blocks
programmable in ANSI C
language.

There are two types of blocks,
allowing you to program in ANSI C
language:

• static functions
in this case the C block
implements the function:
y= f(u;par);

• dynamic functions
in this case the C block
implements the function:
y= f(x,u;par);

(having indicated:
y: outputs, u inputs, x: states, par:
parameters)

The Mission graphically programmed

The ANSI C blocks

13

The Mission library window is customizable with user blocks called ‘macros’.

The macros are created by the user in order to complete the library according to
the user needs.

The macros can be programmed:

• graphically (working on the Graphical Macro layout) or
• in ANSI C language.

They are then available in the Mission Library window and can be used in the
current project.

They can also be exported and then used in other projects.

The Mission graphically programmed

The macros

14

In order to define the inputs
and the outputs of a graphically
programmed block:

Insert inside the graphical layout
the input – outputs blocks.

The Mission graphically programmed

The Input/Output variables

Mission Input Mission Output

15

Directories

Files

The Mission programmed with ANSI C language

The Mission file manager

The User Mission programmed with
ANSI C language has its own file
manager through which it is possible
to program the block.

EICASLAB provides a
pre-organised structure:
a set of template files
subdivided in:
• data files,
• header files,
• ANSI C files,
that you can write and
customize in order to
implement your block.

16

Header files of the pre-organised
structure that are written by the user.

Defines.h

Typedef.h

DB.h

Prototypes.h

Common.h

Definition of
user constants

Definition of user
structures

Definition / declaration of
user variables

Declaration of
the function prototypes

Available for all the blocks
programmed in ANSI C

The Mission programmed with ANSI C language

The header files

Name

M#_ReadPar Parameter file reading ReadPar.c Mission.par

ANSI C FileDescription Data File

M#_Ini User initialisation function Mission.c ---

M#_ReadState Initial state file reading RWState.c Mission.inistate

The Mission programmed with ANSI C language

Initialization functions

18

The Mission programmed with ANSI C language

Execution functions

Name

Mission.c

C FileDescription

M#_Out

M#_Exe
Computation of the next state of the Mission as a function of its current state and

of its inputs

Computation of the outputs of the Mission Mission.c

19

The Mission programmed with ANSI C language

Final functions

Name

M#_Fin User final function Mission.c ---

C FileDescription Data File

M#_WriteState Final state file writing RWState.c Mission.finstate

20

The Mission programmed with ANSI C language

Data file management

21

The Library Read/Write Functions

The Mission programmed with ANSI C language

22

The input/output variables
of the block are defined by
means of an appropriate
window.

The input/output
variables are ANSI C
variables that can be
used in any ANSI C
function of the block.

The Mission programmed with ANSI C language

The Input/Output variables

The scheduling of the Mission functions

The User Mission may be programmed through a set of activities (functions):

Graphical Mission:
all the functions are entirely created and managed by EICASLAB and
depend on the graphical scheme of the Mission Layout and
on the data (e.g. parameters, states) directly inserted by the user.

Mission programmed in ANSI C:
all the functions have a template provided by EICASLAB and
are managed by the user.

The Mission functions

The scheduling of the Mission functions

M
is
si
o
n
A
ct
iv
it
ie
s Initialization functions

Execution functions

Final functions

called just once at the beginning of the simulation

called just once at the end of the simulation

periodically scheduled

The functions belong to three main categories:

Simulation step

Functions categories

The scheduling of the Mission functions

The user has to fix a simulation step,
which represents the time resolution applied in the simulation of the overall project.

The execution functions implement periodic activities characterized by the following
scheduling parameters (expressed as a multiple of the simulation step):

duration

periodphase Simulation step

t

• Phase time at which they are called for the first time,

• Period their sample time interval,

• Duration their execution time.

Scheduling parameters

The scheduling of the Mission functions

Initialization functions

The initial functions are called just once at the beginning of the simulation,
in the following order:

1) Parameter file reading,

2) Initial state file reading,

3) User initialisation function (Only when programmed in ANSI C language).

Graphical Mission:

functions entirely created and managed by EICASLAB,
Mission programmed in ANSI C:

functions created by EICASLAB (template) and managed by the user.

The scheduling of the Discrete Plant

The execution functions

Output function

Exe function Updating of the state of the Mission

Computation of the outputs of the Mission

To guarantee the correct scheduling of the Missionit is necessary to take into account its duration:

Graphical Mission:

functions entirely created and managed by EICASLAB,
Mission programmed in ANSI C:

functions created by EICASLAB (template) and managed by the user.

duration

periodphase Simulation step

t

Output function

Exe function called when the Mission is scheduled (considering its phase and period),

called with the same period of the Exe function but with a delay equal to the duration of the

Mission in order to provide the outputs when they are expected

28

The scheduling of the Discrete Plant functions

Final functions

The final functions are called just once at the end of the simulation
in the following order:

1) User final function (Only when programmed in ANSI C language),

2) Final state file writing.

Graphical Mission:

functions entirely created and managed by EICASLAB,
Mission programmed in ANSI C:

functions created by EICASLAB (template) and managed by the user.

29

The scheduling of the Mission

How to set the scheduling

30

The Elementary Missions

The Elementary Missions are a set of pre-defined signals.
They are represented by blocks that do not have any inputs and have one output:

31

The Elementary Missions

Basic functions

Name Icon in library Block in the layout Description

Step Generates a step function

Ramp Generates a constantly increasing or

decreasing signal

Sin Wave Generates a sine wave

Triangular Wave Generates a triangular wave

SawTooth Wave Generates a saw tooth wave

Rectangular Wave Generates a rectangular wave

Stairs Generates stair wave

32

The Elementary Missions

Noise functions

Name Icon in library Block in the layout Description

White Noise Generates a white noise

Band Noise White noise (W) filtered by a

discrete first order filter

IW Noise Generates a simple summation

of white noises (W).

I2W Noise Generates a double summation

of white noises (W).

33

The Elementary Missions

The parameters of the Elementary Missions

Any instance of any Elementary Mission has its
own parameters.
By central clicking on the instance you can view
and modify the parameters.

34

The Elementary Missions

The scheduling

The elementary missions
provide a signal given by
one EICASLAB function
which is periodically
scheduled.

35

The Professional Software Suite

for Automatic Control Design

and Forecasting

for Windowsfor Linux
&

